CANDLE/Supervisor: A Workflow Framework for
Machine Learning Applied to Cancer Research

Justin M. Wozniak, Rajeev Jain,

Prasanna Balaprakash
Mathematics & Computer Science
Argonne National Laboratory
Argonne, IL, USA

Jamaludin Mohd-Yusof,

Cristina Garcia Cardona
Computer, Computational &
Statistical Sciences
Los Alamos National Laboratory
Los Alamos, NM, USA

ABSTRACT

Current multi-petaflop supercomputers are powerful systems, but
present challenges when faced with problems requiring large ma-
chine learning workflows. Complex algorithms running at system
scale, often with different patterns that require disparate software
packages and complex data flows cause difficulties in assembling and
managing large experiments on these machines. This paper presents
a workflow system that makes progress on scaling machine learn-
ing ensembles, specifically in this first release, ensembles of deep
neural networks that address problems in cancer research across the
atomistic, molecular and population scales. The initial release of the
application framework that we call CANDLE/Supervisor addresses
the problem of hyper-parameter exploration of deep neural networks.
Initial results demonstrating CANDLE on DOE systems at ORNL,
ANL and NERSC (Titan, Theta and Cori, respectively) demonstrate
both scaling and multi-platform execution.

ACM Reference Format:
Justin M. Wozniak, Rajeev Jain, Prasanna Balaprakash, Jonathan Ozik,
Nicholson Collier, John Bauer, Fangfang Xia, Thomas Brettin, Rick Stevens,

Jamaludin Mohd-Yusof, Cristina Garcia Cardona, Brian Van Essen, and Matthew

Baughman. 2017. CANDLE/Supervisor: A Workflow Framework for Ma-
chine Learning Applied to Cancer Research. In Proceedings of Compu-
tational Approaches for Cancer Workshop at SC, Denver, Colorado USA,
November 2017 (CAFCW), 9 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

CAFCW, November 2017, Denver, Colorado USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Jonathan Ozik,

Nicholson Collier
Global Security Sciences
Argonne National Laboratory
Argonne, IL, USA

Brian Van Essen
Lawrence Livermore National
Laboratory
Livermore, CA, USA

John Bauer, Fangfang Xia,

Thomas Brettin, Rick Stevens
Computing, Environment,
and Life Sciences
Argonne National Laboratory
Argonne, IL, USA

Matthew Baughman
Minerva

1 INTRODUCTION

Cancer is an extremely complex disease, which disrupts basic bio-
logical processes at a fundamental level, leading to renegade cells
threatening the health of the individual. Fortunately, with major
technological advances in molecular sequencing, molecular and cel-
lular imaging, and high-throughput screening techniques, it is now
possible to probe the complexity of the disease at an unparalleled
level, which provides a window into the behavior of the disease
at unprecedented time and spatial scales. The application of these
technologies has produced massive datasets that can be analyzed
with automated machine learning (ML) techniques.

Simultaneously, the development of post-petascale and near-exascale
computers is ongoing. Top tier computers in the U.S. include ALCF
Theta, OLCF Titan, and NERSC Cori. These systems feature ex-
tremely large node counts (thousands to tens of thousands), and
are equipped with nodes of many integrated cores such as Knights
Landing or accelerator technologies, such as NVIDIA GPUs. These
systems also have large hierarchical memory and I/O resources.
Thus, they are capable of performing machine learning workloads
that would be extremely time-consuming to run elsewhere (on open
science infrastructure).

This work offers an early attempt to apply these top-tier systems
to three problems in cancer research. We focus here on the problem
of hyperparameter optimization, which tries to find high performing
configurations for neural networks. The design parameters broadly
include the number of layers, neurons per layer, activation function,
and so on. The quality of the network is essentially its accuracy; a
loss function F is determined such that its value is a measure of the
error in the trained network behavior when applied to a validation
set. The hyperparameter optimization problem is to minimze F(p),
for all parameter sets p in the valid parameter space P, however, P is
large and F is expensive. P is the cross product of all valid network
settings, some of which may be categorical, some integer, some
continuous. Evaluating F involves training the network on a training
data set and applying it to the validation set.

This problem is an excellent but challenging candidate for work-
flow technologies, because it involves running a large number of

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

independent tasks, each of which communicates only with the opti-
mization algorithm. Each task is capable of utilizing all the compute
resources on the node, as the available 3rd-party ML implementa-
tions are multi-threaded or deployable on a GPU. The tasks run for
minutes, hours, or longer. Workflow systems would be challenged,
however, by the scale and complexity of the large-scale resources
that we desire to apply to the problem. Also, we desire to apply
complex 3rd-party algorithms written in Python or R to control this
workflow by driving an optimization loop. Similarly, because the
ML algorithms are written in C/C++ with complex Python-based
interfaces, there is a software interfacing challenge. Additionally,
we must collect data on F during the run, as well as various other
data for profiling or validation.

Success in the application of ML to cancer research will enable
and greatly accelerate the capabilities needed to realize the promise
envisioned for the ‘Cancer Moonshot’ [6] and establish a new par-
adigm for cancer research for years to come by making effective
use of the ever-growing volumes and diversity of cancer related
data to build predictive models, provide better understanding of the
disease and, ultimately, provide guidance and support decisions on
anticipated effective treatments for individual patients.

Contributions. This paper offers the following: 1) A description of
several machine learning-based workflows relevant to cancer. 2) An
architecture for coordinating and storing workflow processes and
data products. 3) Performance results from running these workflows
on large-scale systems.

The remainder of this paper is organized as follows. In §2, we
describe the aspects of machine learning relevant to this work. In §3,
we describe the architecture of the CANDLE/Supervisor software
system. In §4, we describe the three workflows currently supported
by CANDLE/Supervisor. In §5, we describe the practicalities and
portability issues. In §6, we describe performance results from these
systems. In §7, we describe future work, and we conclude in §8.

2 MACHINE LEARNING FOR CANCER

Machine learning (ML) has the capability to transform many scien-
tific problems. In response to the growing power of ML techniques
and the increasing available computing power at large scale comput-
ing facilities, the U.S. Department of Energy Exascale Computing
Project (ECP) launched the Cancer Distributed Learning Envi-
ronment (CANDLE). CANDLE is developing a suite of software
to support scalable deep learning on DOE supercomputing resources.
While the CANDLE project is explicitly aimed at supporting deep
learning in the three cancer pilot projects in the near-term, its longer-
term goal is to support a wide variety of deep learning applications
across DOE science domains.

2.1 Frameworks

Deep learning frameworks are under active development by di-
verse research communities in both industry (Google, Facebook,
Microsoft, etc.) and academia (Berkeley, Oxford, Toronto, etc.).
These include Caffe [16], Keras [9], Theano [25], Torch [12], Posei-
don [29], Neon [24], TensorFlow [1], CNTK [21], and the Livermore
Big Artificial Neural Net (LBANN) [27]. Each of these frameworks
differ with respect to the machine learning tasks they target, their

ease of use, data pre-processing, and target problems. Most frame-
works were architected for a single node implementation and a
few distributed memory multi-node implementations have recently
emerged; but these implementations are primarily targeted at smaller
core counts and for commodity cluster environments. Moreover,
these implementations rely on avoiding communication by storing
data on local disks. Implementations targeting high-performance
computing systems will need novel techniques to fully exploit the
system interconnect bandwidth and topologies, as well as the deep
memory hierarchies.

2.2 Hyperparameter search

The simplest, though most costly, methods for hyperparameter opti-
mization include exhaustive space search (the brute force method),
simple gradient descent, multiple gradient descent, and random
search. Though these search algorithms can be tuned to execute
quickly (random search) or to find the optimal solution (exhaustive
search), the marginal optimization with respect to utilized resources
is not efficient for problems with O(10%) or greater reasonable dis-
crete parameter combinations. By including effective reductions
possible using gradient descent, we may gain one or two orders
of magnitude of search space, however, this is still well below the
0(1021) complexity that is possible in the current CANDLE work-
flows.

Currently, several frameworks and libraries exist to accelerate
model exploration. In this work, we use the EMEWS [18] frame-
work that provides a method of efficient exploration of order > 10°
spaces. This framework uses the Argonne-developed Swift/T [2, 28]
language to distribute the model exploration workload efficiently
across a multi-node system. The current workflow currently reduces
loss using a user-specified set of discrete hyperparameters, creating
a Swift/T task instance for each model execution. There are two
primary drawbacks of this method: 1) it requires the user to make
assumptions concerning topological efficiencies and efficacies and
2) it is limited to a small, finite set of models (i.e., it is forcing a
complex algorithm into constrained bounds).

Alternative methods include HyperTune [20], which uses Bayesian
optimization to refine given network hyperparameters. This imple-
mentation of Bayesian optimization excels as it does not require
calculation of many multidimensional derivatives. The algorithm
can be thought of as finding direction from a random sample — a set
of hyperparameters is chosen, then another, and if the second is a
better set than the first, the algorithms aims in that direction. This
method excels as it is extensible and can find reasonable solutions
with much less compute time than evolutionary algorithms but it
can also “bounce around,” not settling on a given set of values or
displacing itself past a promising minima.

Another alternative is the popular Python library, SciKit-Learn [19].
This is a multipurpose machine learning library for Python (easily
integrated with Keras) and can be used for hyperparameter search.
HyperOpt [4] is a hyperparameter search framework that is designed
to perform searches using distributed hardware. HyperOpt has a
SciKit-Learn variant [3].

Another approach is evolutionary algorithms. One of the most
prominent and robust implementation of genetic algorithms for hy-
perparameter search is the NeuroEvolution of Augmenting Topolo-
gies (NEAT) algorithm [23]. The NEAT method begins by spawning
a genome and then producing a population based on that genome.
Using a selection function, the algorithm then usually removes the
least fit (those with the highest error rate or loss) members of the
population, then uses crossover between members of the remaining
subpopulation to produce the next generation. It does this on two
levels, both within each node (neuron) and with the topology of the
network. Using this genetic-style algorithm, one is often able to find
a robustly effective solution. There are, however, some drawbacks
of the NEAT algorithm (or, at least, its specific “NEAT-python” [11]
implementation). The primary factor that would most limit us in our
application is NEAT ‘s alteration of intra-node weights and parame-
ters. While this can definitely prove beneficial by reducing loss at
the “starting point” of training, it also serves as a topology specific
feature that somewhat precludes comparison of pure topological
strengths and weaknesses. The other limiting factor is the overhead
required to generate the network from scratch.

Another system for evolutionary algorithms for hyperparameter
tuning is Optunity [10], a DEAP-dependent [14] hyperparameter tun-
ing engine. DEAP (Distributed Evolutionary Algorithms in Python)
is a Python framework that implements different, generalized evo-
lutionary algorithms. Optunity acts as an interface between DEAP
and the network to be optimized, allowing for easy deployment of
these various algorithms for the purpose of hyperparameter opti-
mization. Optunity is an excellent implementation of evolutionary
algorithms for the purpose of hyperparameter tuning, however, it
was last updated nearly one year ago (2016).

mIrMBO [7] is a R package for model-based approaches de-
veloped for tackling expensive black-box optimization by approxi-
mating the given objective function through a surrogate regression
model. It is designed for optimization problems with mixed con-
tinuous, categorical and conditional parameters. mirMBO follows
Bayesian optimization [5] approach which proceeds as follows. In
the initialization phase, ns configurations are sampled at random,
evaluated, and a surrogate model M is fitted with the input-output
pairs. In the iterative phase, at each iteration, n; promising input
configurations are sampled using the model M. These configurations
are obtained using infill criterion that guides the optimization and
tries to trade-off exploitation and exploration. The infill criterion se-
lects configurations that either have a good expected objective value
(exploitation) or high potential to improve the quality of the model
M (exploration). The algorithm terminates when user-defined maxi-
mum number of evaluations and/or wall-clock time is exhausted.

In this work, we focused on mIrMBO as it was shown to obtain
state-of-the-art performance on a wide range of test problems, where
it was benchmarked against other approaches such as DiceOptim,
rBayesianOptimization, SPOT, SMAC, Spearmint, and Hyperopt.
Crucial to the effectiveness of mirMBO is the choice of the algo-
rithm used to fit M and the infill criterion. Given the mixed integer
parameters in the hyperparameter search, we used random forest [8]
because it can handle such parameters directly, without the need to
encode the categorical parameters as numeric. For the infill criterion,
we used the qLCB [15], which proposes multiple points with varying
degrees of exploration and exploitation.

3 ARCHITECTURE

Emerging multi-petaflop supercomputers are powerful platforms
for ensembles of neural networks that can address many problems
in cancer research, but it is difficult to assemble and manage large
studies on these machine, which have tens of thousands of compute
nodes. Typical workflow approaches would face challenges due to
system scale, system complexity, management of complex work-
flow patterns, integration with disparate software packages, and data
acquisition. CANDLE/Supervisor addresses the problem of hyper-
parameter optimization for cancer-based problems, and solves the
common workflow challenges outlined above.

To support the search patterns described in §2, we developed
the CANDLE/Supervisor architecture diagrammed in Figure 1. The
overall goal is to solve the hyperparameter optimization problem to
minimize F(p), where F is the performance of the neural network
parameterized by p € P, where P is the space of valid parameters.

The optimization is controlled by an Algorithm @ selected by
the user. The Algorithm can be selected from those previously inte-
grated into CANDLE, or new ones can be added. These can be nearly
any conceivable model exploration (ME) algorithm that can be in-

tegrated with the EMEWS @ software framework. EMEWS [18]
enables the user to plug in ME algorithms into a workflow for ar-
bitrary model exploration; optimization is a key use case. The ME
algorithm can be expressed in Python or R. This is implemented in
a reusable way by connecting the parameter generating ME algo-
rithm and output registration methods to interprocess communication
mechanisms that allow these values to be exchanged with Swift/T.
EMEWS currently provides this high-level queue-like interface in
two implementations: EQ/Py and EQ/R (EMEWS Queues for Python
and R). The Algorithm is run on a thread on one of the processors

in the system. It is controlled by a Swift/T script @ provided by
EMEWS, that obtains parameter tuples to sample and distributes
them for evaluation.

The Swift/T [2, 28] workflow system is used to manage the overall
workflow. It integrates with the various HPC schedulers (§5) to bring
up an allocation. A Swift/T run deploys one or more load balancers
and many worker processes distributed across compute nodes in a
configurable manner. Normally, Swift/T evaluates a workflow script
and distributes the resulting work units for execution across the
nodes of a computer system over MPIL. Swift/T can launch jobs in a
variety of ways, including in-memory Python functions in a bundled
Python interpreter, shell commands, or even MPI-based parallel
tasks. However, in this use case, workflow control is delegated to the
Algorithm via the EMEWS framework, which provides the Swift/T
script.

During an optimization iteration, the Algorithm produces a list

of parameter tuples @ that are encoded as arguments to a Python-

based Wrapper script @ These wrapper scripts are the interfaces
to the various CANDLE Pilot applications. The parameters are en-
coded in JavaScript Object Notation (JSON) format which can be
easily converted by the Python Wrapper script into a Python dic-
tionary, from which a CANDLE Pilot application can retrieve the
parameter values. These scripts are run concurrently across the avail-
able nodes of the Swift/T allocation, typically one per node. Thus,
the ML has access to all the resources on the node. The ML is

the underlying learning engine; we have tested with Theano and
TensorFlow. The Pilots are Python programs that implement the
application-level logic of the cancer problem in question. They use
the Keras interface to interact with the ML and are coded to enable
the hyperparameters to be inferred from a suitable default model file,
or to be overwritten from the command line. It is this construction
that allows the parameter tuples to be easily ingested by the respec-
tive Pilots, and use a standardized interface developed as part of the
project.

The result of a Wrapper execution is a performance measure
on the parameter tuple p, typically the validation loss. Other met-
rics could be used, including training time or some combination
thereof. These are fed back to the Algorithm by EMEWS to produce
additional parameters to sample. The results are also written to a
Solr-based Metadata Store @, which contains information about
the Wrapper execution. The Metadata Store accesses are triggered by
Keras callback functions, which allow Wrapper code to be invoked
by Keras at regular intervals. Thus, a progress history is available
for each learning trial run, as well as for the overall optimization
workflow. Good models can also be selected and written to a Model
Store.

Hyperparameters p € P
(1) Algorithm P p p @
- ¥
H " [Pt | [piet |
L S=
Wrapper | keras
ML appet = ra [Pt]

' @
Model Store Metadata Store

Petascale computer

Figure 1: CANDLE/Supervisor overall architecture.

4 WORKFLOWS

In this section, we describe how the framework described in §3 is
applied to the three pilot cancer problems. CANDLE is investigat-
ing three promising pilot applications of ML technology to cancer
research:

P:RAS - The RAS pathway problem. The RAS/RAF pathway is
a series of chemical events that is implicated in 30% of cancers. The
goal of this pilot is to understand the molecular basis of key protein
interactions in this pathway.

P:DRUG - The drug response problem. The goal of this pilot is
to develop predictive models for drug response that can be used to
optimize pre-clinical drug screening and drive precision medicine
based treatments for cancer patients.

P:TREAT - The treatment strategy problem. The goal of this
pilot is to automate the analysis and extraction of information from

millions of cancer patient records to determine optimal cancer treat-
ment strategies across a range of patient lifestyles, environmental
exposures, cancer types and healthcare systems.

While each of these three challenges are at different scales (i.e.,
molecular, cellular and population) and have specific scientific teams
collaborating on the data acquisition, data analysis, model formu-
lation, and scientific runs of simulations, they also share several
common threads. They are all linked by common sets of cancer
types that will appear at all three scales, all have to address signifi-
cant data management and data analysis problems, and all need to
integrate simulation, data analysis and machine learning to make
progress. We have focused on the machine learning aspect of the
three problems and, in particular, we are focused on building a sin-
gle, scalable deep neural network computing environment to support
them.

4.1 P:RAS - The RAS pathway problem

For this Pilot the goal is to develop a predictive capability for model-
ing the behavior of proteins on membranes and to apply that capabil-
ity to RAS and effector proteins along the primary RAS signaling
pathways. We expect that as a result of this capability we will ac-
celerate the identification and development of effective therapeutics
targeting cancers driven by RAS mutations, including the three
deadliest cancers occurring today: pancreatic, lung and colon. By
exploiting a mixture of atomistic and coarse-grained resolutions
we anticipate modeling for the first time a relevant size (O(100)
atoms) and time-scale (O(107) timesteps) to allow investigation of
targetable binding sites along the RAS signaling cascade. Unfortu-
nately, the combinatorial number of possible binding interactions
along the cascade renders a human-guided exploration of the state-
space unlikely to uncover a site suitable for therapeutic intervention.
What is required is a formalism for defining and following a path of
simulations that will lead us to a targetable site.

The starting point for our deep learning is the output of these
extremely large-scale molecular dynamics calculations. We aim to
use unsupervised learning to uncover features from these simulations
that can be used to describe the state-space of protein movement and
binding in a higher level model. These higher level models can then
be used to explore (far more efficiently) the possible dynamics of
RAS interactions, delivering many millions of hypothetical trajecto-
ries which can be scored according to likelihood. By investigating
(through direct numerical simulation) the most likely of these tra-
jectories, we “close the loop” — essentially testing our hypothesis
and then learning from the results. Any new information is used
to refine the definitions of likelihood and affect future hypothesis.
This combination of machine learning and molecular dynamics to
develop and test hypotheses of protein binding will dramatically
enhance our understanding of RAS signaling pathways (potentially
leading to a cure) and demonstrates a new and powerful way to use
high performance computing as tool for scientific discovery.

Pilot application. The P:RAS pilot is a two-stage set of stacked
autoencoders that learn both molecular- and frame- level features
for the coarse-grained molecular dynamics simulation of a lipid
membrane. The first part of the neural network is a multi-stage
stacked, convolutional autoencoder with a local receptive field sized
to observe individual molecules, which produces molecular-level

features. The second part of the neural network is a multi-stage,
stacked fully connected autoencoder that processes the output of
the molecular autoencoder to create a compressed representation of
the entire simulation frame. For preliminary network optimizations,
we have explored the following hyperparameters: 1) number of
convolutional layers and features in the molecular autoencoder, 2)
number of fully-connected layers and size of each layer, and 3) size
of stochastic gradient descent mini-batch.

4.2 P:DRUG - The drug response problem

Our ultimate goal is to fully exploit exascale computing to develop
the predictive models necessary to guide the choice of drug treat-
ment for a tumor based on that patient’s molecular biomarkers and
knowledge of drug responses in other cases. The development of
CANDLE will bring deep learning to bear on this problem at an
unprecedented scale, and we believe will produce models uniquely
capable of making precision medicine a reality. Deep learning has the
potential to generate models that take into account a vastly increased
diversity of input features than other types of machine learning [17].
Today machine learning is typically used to estimate drug response
and patient outcome from one type of molecular data such as gene
expression; however it has been demonstrated that models that in-
corporate more than one type of molecular information can be more
accurate [13]. Our goal in this problem is to develop a scalable
deep learning framework that will support the utilization of many
types of information as input to models. Ideally, we will integrate
into our models information about drug molecular structures, drug
interactions, drug combinations and drug molecular targets with
information about the patient’s genetics, including their baseline
genotype as well as the specific genetics and other molecular and
cellular properties of their tumor, including gene mutations, gene
expression patterns, proteome, transcriptome including small and
non-coding RNAs, metabolomics, prior treatments, co-morbidities
and environmental exposure.

Our current working data contains drug and drug-like molecular
screening data from over 300,000 compounds that have been tested
on at least 60 cell lines giving us O(107) training cases. For each
tumor derived cell line, we have molecular characterization data that
includes many types of microarrays each with ~ 10° data points;
we have genetic variation data for these sample that consist of 107
single nucleotide polymorphisms (SNPs); variety of proteomics,
metabolomics, and transcription datasets including over 50,000 types
of small and non-coding RNAs. For the compounds involved in
screening, we can compute molecular characterization data (e.g.,
drug descriptors and molecular fingerprints) that when taken together
are 0(10°) features per molecule. Thus, our initial deep learning
formulation of the drug response problem has an input data volume
of between 10'* — 101> measurements or approximately 1PB. The
ten-year problem target is at least an order of magnitude larger than
this. To our knowledge, this would be one of the largest deep learning
problems in biomedical science. One of the largest training sets in
the DNN community is a 15TB image recognition dataset [26]. Our
ten-year goal is to expand this capability by at least an order of
magnitude (10PB input data), requiring between 100TB and 1PB
of high-speed memory for a single network instantiation and with a
target training epoch runtime of hours.

Pilot application. The P:DRUG is a binary classification task on
1400 RNA-seq based gene expression profiles from the NCI Ge-
nomic Data Commons (GDC). 700 of these samples are from tumor
tissues and the other 700 are their matched normals. There are 60,483
features for each sample that are fed into a neural network with a
default configuration of two dense layers on top of two convolu-
tion layers. The following hyperparameters are explored to optimize
our network architecture: 1) learning rate, 2) batch size, 3) number
of epochs, 4) dropout, 5) activation function, 6) loss measure, 7)
optimizer, 8) the number of convolution layers and the number of
neurons in each convolution layer, and 9) the number of dense layers
and the number of neurons in each dense layer.

4.3 P:TREAT - The treatment strategy problem

Our goal is to exploit exascale computing to develop the predic-
tive models necessary for population-wide cancer surveillance that
extends beyond the clinical trial setting. The treatment strategy prob-
lem tackles the critical issue of clinical translation to determine
to what extent scientific advances, such as those made within the
RAS pathway and drug response problems, translate successfully in
the real world. The treatment strategy problem requires integration
of heterogeneous datasets as well as deep analytic techniques to
understand the interrelationships among genetic, lifestyle and en-
vironmental factors in patient-specific cancer etiology and cancer
outcomes.

To achieve our overarching goal, we will first leverage the CAN-
DLE environment to deploy deep learning for automated extraction
of clinical variables about patient-level cancer management trapped
in unstructured text data from daily clinical practice. These variables
capture important information about the patient’s cancer staging,
administered therapies, disease progression (i.e., recurrence, metas-
tasis), and outcome. Such information is critical to understand the
impact of cancer treatment strategies and policies in the broad popu-
lation as part of the national cancer surveillance program. Current
practice relies on manual information extraction, an approach that
is neither scalable nor comprehensive for a variety of reasons; the
number of people living with cancer increases (roughly 15,000,000
people live with cancer in the US [22], new diagnostic and thera-
peutic biomarkers are continuously introduced, and new therapeutic
options enter the clinical arena. Traditional natural language process-
ing (NLP) algorithms have been developed to automate this process.
The NLP algorithms rely on carefully crafted keyword-based rules
for information extraction. With the well-known variation in clini-
cal expression and the size of the controlled medical vocabularies
containing more than 100,000 medical terms and expressions (de-
scribing diseases, conditions, symptoms, and medical semantics that
are typically present in unstructured clinical text), hand-engineered
rule extraction is neither scalable nor effective for large-scale clin-
ical deployment. Deep learning has the potential to address these
challenges and capture both semantic and syntactic information in
clinical text without having explicit knowledge of the clinical lan-
guage. However, the deep learning tools that can handle the specific
requirements of this third challenge (input space (O(10°) patients)
x feature space (O(10°) medical terms and expressions) X output
space (0(10°) medical biomarkers and clinical endpoints throughout
a cancer patient’s medical care trajectory) do not currently exist. We

will develop those tools, focusing specifically on semi-supervised
learning since it is impractical to collect millions of expert-annotated
clinical reports. A semi-supervised algorithmic framework is best
suited to this challenge, balancing carefully the number of labeled
data (> 10,000 clinical reports) and unlabeled data (> 2,000, 000
clinical reports) to be made available to us by NCI. We will explore
convolutional, deep-belief, and deep-stacking networks. In addition,
we will implement a multi-task deep learning framework that can be
used for joint classification/information extraction tasks.

Pilot application. For the P:TREAT Pilot, which involves training
a multi-task deep neural network (MT-DNN), we used the following
hyperparameters to optimize our network architecture: 1) learning
rate, 2) batch size, 3) number of epochs, 4) dropout, 5) activation
function, 6) loss measure, 7) optimizer, 8) number of folds, 9) the
number of neurons in the shared layer, and 10) the number of neu-
rons in the task-specific layer. For the MT-DNN, we chose three
classification tasks, namely i) primary site, ii) tumor laterality, and
iii) histological grade. For each of the parameters outlined above, we
run a parameter sweep on our MT-DNN to iteratively optimize the
average accuracy per training task. The end of the hyperparameter
sweep results in a MT-DNN that is optimally performant on the three
classification tasks.

S COMPUTING SYSTEMS

The three workflows described previously (§4) were run on ALCF
Theta, OLCF Titan, and NERSC Cori. These systems vary greatly in
their hardware and software systems. The following is an overview
of their system parameters:

o ALCF Theta at Argonne National Laboratory
— 3,624 nodes with
% 64-core Intel Xeon Phi
x 16 GB MCDRAM, 192 GB of DDR4 RAM
— Python 2.7.13, Keras 2.0.2, TensorFlow 1.2.0
— Scheduler: Cobalt
o OLCEF Titan at Oak Ridge National Laboratory
— 18,688 nodes with
% 16-core AMD CPU
* NVIDIA Kepler K20X GPUs
x 32 GB RAM
— Python 3.6, Keras 2.0.3, TensorFlow 1.0.1
— Scheduler: PBS
o NERSC Cori at Lawrence Berkeley National Laboratory
— 2,388 nodes with
x Intel Xeon Haswell CPUs
x 128 GB RAM
— 9,688 nodes with
x Intel Xeon Phi
x 16 GB MCDRAM, 96 GB DDR
— Python 2.7.12, Keras 2.0.0, TensorFlow 1.2.0
— Scheduler: SLURM

As tabulated above, it is clear that these systems vary significantly
in their hardware capabilities and installed software systems. This
does not include differences in compiler versions, software module
management, and storage system policies or capabilities.

We use Swift/T to abstract the scheduler and compute layout
settings. The launch parameters for Swift/T allow the user to specify
the scheduler type, processor count, workers per node, and other
common settings in a uniform way across systems.

We use our Wrapper script abstraction (§3) to abstract the Python
configuration and ML library settings. The wrapper script is invoked
in one of two ways, either by a short piece of Python code, the text
of which is embedded in the Swift/T script and executed directly by
the Swift/T runtime embedded Python interpreter, or by a bash script
that is executed via a Swift/T app function [28]. App functions are
Swift/T language functions that are implemented as command-line
programs, in this case a shell script that calls the Python interpreter
passing it the wrapper script as an argument. In both cases, the
Swift/T script receives the hyperparameters from the model explo-
ration algorithm and passes them to the wrapper script either via a
string template in the embedded Python code or as a command line
argument to the bash script.

The workflows were run on Cori using embedded Python invo-
cation and on Theta and Titan using the app invocation of the bash
script. Depending on the software stack available on the resource, the
app function invocation avoids potential conflicts between Swift‘s
embedded Python interpreter and the Python used by the deep learn-
ing frameworks by setting the PATH, PYTHONPATH, and other en-
vironment variables appropriately for the system in question.

6 PERFORMANCE RESULTS

In this section, we measure the performance of the CANDLE/Supervisor

system for the cancer pilot workloads. We measure quantities rel-
evant to the performance of a workflow system, namely, system
utilization, task start-up latency, and task rate scaling.

6.1 System utilization analysis

In our first test, we measure system utilization on NERSC Cori.
This test measures the fraction of the system available to the ML
libraries, everything else is treated as overhead. In this test, we used
the P:DRUG pilot workflow. The plots that follow illustrate the
capability of our hyperparameter optimization infrastructure. Two
search approaches, random and model-based searches, were scaled
up to 360 nodes.

&
=

w
2
S

¥}
w
S

QPRI
RiL

——

models running
L LN
w 2
[=] (=]

—

o

S
-

50

0
00 05 10 15 20 25 3.0 35 40 45 50 55 60 65 7.0
time (hours)

[Random search — Model-Based Search |

Figure 2: System utilization for hyperparameter optimization
on Cori.

To perform the CANDLE hyperparameter optimization, we in-
stalled the CANDLE/Supervisor environment with EMEWS config-
ured to use mlrMBO as the optimization algorithm. We used the ML
package that provides a deep learning environment for Python 2.7,
including Keras, TensorFlow, Theano, etc., provided by the NERSC
administrators.

On Cori, we ran P:RAS and P:TREAT benchmarks on 360 nodes.
For P:RAS, we ran two different hyperparameter search strategies:
random search and model-based-search, both with a budget of 1800
parameter configurations. In the former, 1800 configurations were
generated at random and evaluated by the workflow infrastructure.
In the latter, 360 configurations are generated at random and the
model-based-search generates 360 configurations at each iteration
and evaluated. The results are shown in Figure 6. Our framework
scales well to the total number of nodes in the system; there is
negligible ramp-up time.

While the performance results show that random search has better
resource utilization over model based search, this is due to the fact
that model searches cannot proceed to the next sampling iteration
until it finishes evaluating all configurations from the previous itera-
tion. In a more realistic run, the models would run longer, reducing
the impact of the gaps between iterations. Additionally, we plan to
overlap runs between iterations as described in§7.

6.2 Scaling one iteration

In this experiment we run the P:DRUG benchmark with mlrMBO
for one iteration at various scales on Titan to determine scalability.
For each node count N, we recorded the start time and stop time,
and plot the number of models running on the system at each point
in time. The result is shown in Figure 3.

1,000
900
800
700
600
500+
400
300+
200
100

0 : : ==

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

time (hours)

models running

| nodes=256 nodes=512 nudez:1024|

Figure 3: Load profile for increasing workflow scale.

As shown in the plot, increasing the number of nodes in the run
increases the work done. While there is a considerable impact from
task time variability, all tasks exit before they are forced to timeout,
which would happen at the 90 minute mark. This shows that the
CANDLE/Supervisor system is capable of delivering large-scale
computational resources to hyperparameter search workflows.

6.3 Task start-up latency

Our underlying Supervisor workflow engine is capable of quickly
distributing tasks to workers, but the workers must load the necessary
optimization and ML libraries before executing. The plot in Figure 4

illustrates this. For increasing workloads (up to 62 nodes, one model
per node) on Cori, we profiled the load time for the R packages
and Python packages. The total load time is about 50 seconds at 62
nodes. We use the in-memory Python and R interpreters available in
Swift/T to load these modules, meaning that they are only loaded
once per node per workflow, and not for each task.

time (seconds)

2 3 4 5 10 20 30
concurrent models

| = R Package Load - R+Python Package LGdd|

Figure 4: Software load time for Python and R modules on Cori.

As shown in the plot, loading the software (not even the train-
ing data!) takes almost a minute, even at the modest scale shown.
Thus, the ability to keep the modules loaded in the Python and R
interpreters from task to task, a unique Swift/T ability, is critical for
these workflows.

6.4 Task rate scaling

In this measurement, we seek to summarize the scaling properties
of our system by measuring models completed per unit time. In this
case, we ran the P:DRUG workflow on Titan at various scale and
simply measuring the number of models completed per hour. This
result is shown in Figure 5.

1,300 1,060 models/hy
o moceis/hour on
1,200 1,024 nodes

1,100

1,000
900
800
700
600 |
500 |
400
300 g
200
100

models/hour

300 400 500 600 700 8OO 900 1,000
nodes

Figure 5: Scalability: models completed per hour on Titan.

As shown in the plot, the models per hour rate increases linearly
up to 1,024 nodes, reaching a maximum measured rate of 1,060
models/hour.

7 FUTURE WORK

This paper demonstrates the basic features of a scalable workflow
framework for machine learning applied to problems in cancer re-
search, but there are many additional features yet to investigate and
develop.

First, we plan to address the cyclical nature of our workflows
and resolve the gap problem shown in Figure 2. We will modify
the optimizers to be “streaming optimizers”, which will be capable
of producing more sample points as soon as sample results are
available, instead of one iteration at a time. This may take significant
modification to existing optimizer codes, but the potential gain in
utilization will be worth the effort.

Second, we plan to support larger data-parallel machine learning
models in our workflows. Swift/T already has support for parallel
MPI jobs, etc. [28] Our workflows will be able to use this feature
to dynamically select the resource levels to apply to each model
execution.

Third, we are applying our experience using these optimizers to
develop new optimizers for hyperparameter optimization. These opti-
mizers will be compatible with the CANDLE/Supervisor framework
and we will easily be able to measure their quality against existing
techniques on large-scale problems.

8 CONCLUSION

Applying machine learning to cancer research is a promising ap-
proach in many aspects, including the benchmark problems used
here, the RAS pathway, drug response, and treatment strategies. A
significant challenge in this area is selecting and parameterizing
the neural network models and software packages to be applied to
these problems. In this paper, we described the relevant workflows
in some detail. We then offered our solution by presenting CAN-
DLE/Supervisor, a framework for rapidly testing hyperparameter
optimization techniques for machine learning models, and showed
how it is applied to several cancer benchmarks.

The CANDLE/Supervisor framework offers multiple features to
support machine learning in cancer research. First, is has a pluggable
architecture, allowing users to easily substitute the optimizer or ML
problem. Second, it is efficient, allowing use of large-scale resources,
as described in§6. Third, it is portable, and allows researchers to
benefit from the abundant computational concurrency available on
many leadership-class systems. The software has also been tested
on clusters and individual workstations.

As the project progresses, the design of the Pilots will evolve,
either by modification of the default model paremeters (within a
certain class of ML networks) or via construction of new networks,
which may in turn necessitate modifications at the Supervisor level.
We intend to periodically release updated Pilots, synchronized with
appropriate updates at all levels of the CANDLE/Supervisor.

Cancer research is an important topic with significant societal
impact. CANDLE/Supervisor allows research teams to leverage the
most powerful high-performance computer systems in this problem
space.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.
This research used resources of the Argonne Leadership Comput-
ing Facility, which is a DOE Office of Science User Facility. This
research used resources of the Argonne Leadership Computing Facil-
ity, which is a DOE Office of Science User Facility supported under
Contract DE-AC02-06CH11357. This research used resources of the
Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-000R22725.
This research used resources of the National Energy Research Sci-
entific Computing Center, a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

(2015). https://www.tensorflow.org/ Software available from tensorflow.org.

Timothy G. Armstrong, Justin M. Wozniak, Michael Wilde, and Ian T. Foster.

2014. Compiler techniques for massively scalable implicit task parallelism. In

Proc. SC.

James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D.

Cox. 2015. Hyperopt: a Python library for model selection and hyperparam-

eter optimization. Computational Science & Discovery 8, 1 (2015), 014008.

http://stacks.iop.org/1749-4699/8/i=1/a=014008

James Bergstra, Daniel Yamins, and David D. Cox. 2013. Making a science of

model search: Hyperparameter optimization in hundreds of dimensions for vision

architectures. In Proc. of the 30th International Conference on Machine Learning.

James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. 2011. Al-

gorithms for hyper-parameter optimization. In Advances in Neural Information

Processing Systems. 2546-2554.

[6] Joseph Biden. 2016. Report on the Cancer Moonshot. https://medium.com/

cancer-moonshot/my-report- to- the- president-3c64b0dae863. (October 2016).

Bernd Bischl, Jakob Richter, Jakob Bossek, Daniel Horn, Janek Thomas, and

Michel Lang. 2017. mIrMBO: A modular framework for model-based optimization

of expensive black-box functions. arXiv preprint arXiv:1703.03373 (2017).

[8] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5-32.
[9] Frangois Chollet et al. 2015. Keras. https://github.com/fchollet/keras. (2015).

[10] Marc Claesen, Jaak Simm, Dusan Popovic, Yves Moreau, and Bart De Moor.
2014. Easy hyperparameter search using optunity. CoRR abs/1412.1114 (2014).
http://arxiv.org/abs/1412.1114

[11] CodeReclaimers. 2017. NEAT-Python. https://github.com/CodeReclaimers/
neat-python. (2017).

[12] R. Collobert, K. Kavukcuoglu, and C. Farabet. 2011. Torch7: A Matlab-like
environment for machine learning. In BigLearn, NIPS Workshop.

[13] James C. Costello, Laura M. Heiser, Elisabeth Georgii, Mehmet GAdfinen,
Michael P. Menden, Nicholas J. Wang, Mukesh Bansal, Muhammad Ammad ud
din, Petteri Hintsanen, Suleiman A. Khan, John-Patrick Mpindi, Olli Kallioniemi,
Antti Honkela, Tero Aittokallio, Krister Wennerberg, NCI DREAM Community,
James J. Collins, Dan Gallahan, Dinah Singer, Julio Saez-Rodriguez, Samuel
Kaski, Joe W. Gray, and Gustavo Stolovitzky. 2014. A community effort to assess
and improve drug sensitivity prediction algorithms. Nature Biotechnology 32
(2014), 1202-12.

[14] Félix-Antoine Fortin, Francois-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary algorithms made easy.
Journal of Machine Learning Research 13 (jul 2012), 2171-2175.

[15] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. 2012. Parallel algorithm
configuration. Learning and Intelligent Optimization (2012), 55-70.

[16] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014).

[2

=

[4

[5

(7

https://www.tensorflow.org/
http://stacks.iop.org/1749-4699/8/i=1/a=014008
https://medium.com/cancer-moonshot/my-report-to-the-president-3c64b0dae863
https://medium.com/cancer-moonshot/my-report-to-the-president-3c64b0dae863
https://github.com/fchollet/keras
http://arxiv.org/abs/1412.1114
https://github.com/CodeReclaimers/neat-python
https://github.com/CodeReclaimers/neat-python

[17]

[18]

[19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

[27]

[28]

[29]

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521 (2015), 436-44.

Jonathan Ozik, Nicholson Collier, Justin M. Wozniak, and Carmine Spagnuolo.
2016. From desktop to large-scale model exploration with Swift/T. In Proc. Winter
Simulation Conference.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.

Greg Kochanski Puneith Kaul, Daniel Golovin. 2017. Hyperpa-
rameter tuning in Cloud Machine Learning Engine using Bayesian
Optimization. https://cloud.google.com/blog/big-data/2017/08/

hyperparameter-tuning-in-cloud- machine- learning-engine-using-bayesian-optimization.

(2017).

Frank Seide and Amit Agarwal. 2016. CNTK: Microsoft’s open-source deep-
learning toolkit. In Proceedings of the 22Nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD ’16). ACM, New York,
NY, USA, 2135-2135. https://doi.org/10.1145/2939672.2945397

American Cancer Society. 2016. (2016).

Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving neural networks
through augmenting topologies. Evolutionary Computation 10, 2 (2002), 99-127.

Nervana Systems. 2017. Neon. https://github.com/NervanaSystems/neon. (2017).
Accessed: 2017-09-14.

Theano Development Team. 2016. Theano: A Python framework for fast compu-
tation of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016).
http://arxiv.org/abs/1605.02688

Bart Thomee, David A. Shamma, Gerald Friedland, Benjamin Elizalde, Karl
Ni, Douglas Poland, Damian Borth, and Li-Jia Li. 2015. The new data and
new challenges in multimedia research. CoRR abs/1503.01817 (2015). http:
/larxiv.org/abs/1503.01817

Brian Van Essen, Hyojin Kim, Roger Pearce, Kofi Boakye, and Barry Chen. 2015.
LBANN: Livermore Big Artificial Neural Network HPC Toolkit. In Proceed-
ings of the Workshop on Machine Learning in High-Performance Computing
Environments (MLHPC ’15). ACM, New York, NY, USA, Article 5, 6 pages.
https://doi.org/10.1145/2834892.2834897

Justin M. Wozniak, Timothy G. Armstrong, Michael Wilde, Daniel S. Katz, Ewing
Lusk, and Ian T. Foster. 2013. Swift/T: Scalable data flow programming for
distributed-memory task-parallel applications. In Proc. CCGrid.

Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang,
Zhiting Hu, Jinliang Wei, Pengtao Xie, and Eric P. Xing. 2017. Poseidon: An
efficient communication architecture for distributed deep learning on GPU clusters.
CoRR abs/1706.03292 (2017). http://arxiv.org/abs/1706.03292

(The following paragraph will be removed from the final version.)

This manuscript was created by UChicago Argonne, LL.C, Opera-
tor of Argonne National Laboratory (“Argonne”). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated un-
der Contract DE-AC02-06CH11357. The U.S. Government retains
for itself, and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of the Government.

https://cloud.google.com/blog/big-data/2017/08/hyperparameter-tuning-in-cloud-machine-learning-engine-using-bayesian-optimization
https://cloud.google.com/blog/big-data/2017/08/hyperparameter-tuning-in-cloud-machine-learning-engine-using-bayesian-optimization
https://doi.org/10.1145/2939672.2945397
https://github.com/NervanaSystems/neon
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1503.01817
http://arxiv.org/abs/1503.01817
https://doi.org/10.1145/2834892.2834897
http://arxiv.org/abs/1706.03292

	Abstract
	1 Introduction
	2 Machine learning for cancer
	2.1 Frameworks
	2.2 Hyperparameter search

	3 Architecture
	4 Workflows
	4.1 P:RAS – The RAS pathway problem
	4.2 P:DRUG – The drug response problem
	4.3 P:TREAT – The treatment strategy problem

	5 Computing systems
	6 Performance results
	6.1 System utilization analysis
	6.2 Scaling one iteration
	6.3 Task start-up latency
	6.4 Task rate scaling

	7 Future work
	8 Conclusion
	References

